
How Invicti
Generates Proof
to Avoid False
Positives

Technical White Paper: Proof-Based Scanning

How Invicti Generates Proof to Avoid False Positives | 2

While all vendors claim that their products are
highly accurate, the truth is that extracting facts
from raw test results is extremely difficult –
and doing this automatically is even harder.

This document highlights the major technical
challenges in automated application security testing
and shows how Invicti uses Proof-Based Scanning
technology to cut through the noise and deliver
actionable results with 99.98% accuracy.

Automated testing and false
alarms seem to go hand in hand,
especially in cybersecurity.

How Invicti Generates Proof to Avoid False Positives | 3

P O S I T I V E

P O S I T I V E

Noise in results brings
uncertainty into security testing
There are many sources of uncertainty in automated security testing that can lead to
a large proportion of false positives in results. These negate many of the efficiency
gains from automation because every result, while obtained automatically, still needs
manual verification. Scanners that don’t have a way of confirming vulnerabilities also
need to err on the side of caution and risk more false positives to avoid losing real
issues in the noise.

How Invicti Generates Proof to Avoid False Positives | 4

Insufficient context
Awareness of the execution context is probably the
most important advantage that human testers have
over automated tools. The same behavior or response
may be perfectly valid in one place but dangerous in
another, even within the same application. Without
context, an automated DAST tool may have difficulty
deciding whether to report a vulnerability (and risk a
false positive) or ignore the issue (and risk missing a
true vulnerability).

Invicti deals with this by obtaining as much context
as possible from the user through its extensive
configuration and customization options. Users
can create finely-tuned scan profiles and policies to
adapt scanner behavior to the specific application.
This includes the ability to exclude certain parts of the
application from the scan and configure automated
authentication to ensure that scans on restricted pages
return valid results.

Implementation-
dependent behaviors
Standards and specifications are one thing but
actual implementations are quite another. This can
pose a serious challenge for less advanced DAST tools
that assume only compliant or otherwise expected
behavior in their checks. Implementation-specific
behaviors might then be misinterpreted, leading
to inaccurate results.

One common example is varying application reactions
to attempts to access the protected .htaccess file on
Apache web servers. For instance, some may return
a typical 404 Not Found code, while others might
return 403 Forbidden and others still 200 OK but with
an error message. Invicti deals with this by checking
for an actual file at the specified location rather than
relying on the HTTP status code alone. To avoid false
positives related to missing or inaccessible pages,
Invicti also uses automatic error page detection
that is independent of status codes.

Reliance on finding
patterns in responses
The simplest way to perform web application security
testing is to send requests that include specific strings
and then search server responses for those strings. In
automated tools, this might involve regular expressions
and other forms of pattern-matching, but the idea is
the same: the scanner is looking for a specific value
or pattern in the response. While this naive approach
may work for simple cases, it will generate many false
alarms because any legitimate responses that happen
to match the same pattern will also be treated as a sign
of vulnerability.

To avoid this pitfall, Invicti relies on identifying
transformations rather than literal values. For example,
a test payload for code injection may cause a vulnerable
application to perform a calculation and return the result
rather than the original payload. This provides proof
that the value is not an accidental match but the effect
of a genuine vulnerability. Where needed and possible,
Invicti combines such tests with the use of its dedicated
infrastructure to identify and conclusively confirm out-
of-band and second-order vulnerabilities.

Inconsistent response times
When attempting time-based attacks, less sophisticated
tools may assume fixed response thresholds. For
example, the scanner might be targeting a time-based
SQL injection vulnerability and checking if certain
queries cause the server to pause execution for 5
seconds. If the server happens to be under heavy load
or is experiencing connectivity issues, server reactions
to the test attacks might be delayed for longer than 5
seconds even if no vulnerability exists, causing a basic
scanner to report a false positive.

Invicti avoids false alarms in such cases by
dynamically calculating and adjusting the threshold
based on actual server performance to account for
current load and other fluctuations. This allows the
scanner to clearly distinguish between delays caused
by sluggish performance and those triggered by the test
payload. Again, Invicti’s dedicated response tracking
infrastructure is used to reliably detect time-based and
other out-of-band vulnerabilities without the scanner
having to wait for each result.

Let’s look at some common sources of uncertainty in
dynamic application security testing (DAST) and see
how Invicti specifically deals with them.

While these only cover a handful of examples, they
should give you some idea of the innumerable details
and subtleties that an effective vulnerability scanner
must take into account.
	

How Invicti Generates Proof to Avoid False Positives | 5

Proof where it matters most
Proof-Based Scanning was built around the
fundamental insight that the only way to be completely
sure a vulnerability is exploitable is to exploit it. While a
simple enough concept, performing automated attacks
in a safe way and providing proof they were successful
required years of security research and application
development. Invicti uses a complete embedded
web browser engine not only to parse and crawl any
application that a modern browser can render but also
to simulate and analyze real-life browser interactions
– including attack attempts. This allows the scanner to
detect successful attacks and automatically confirm the
underlying vulnerabilities with no risk of false positives.

Invicti comes with a vast set of configurable attack
patterns to mimic the actions of advanced real-life
attackers, incorporating accumulated cases from
over a decade of continuous research. While it is
not technically possible to safely exploit every single
vulnerability identified by the scanner, Invicti focuses
on direct-impact vulnerabilities* that, if they made
it into a production site or application, could be
directly exploited by malicious actors. Accompanied
by detailed technical information and remediation
guidance, these vulnerability reports allow you to make
informed decisions and quickly react to critical issues.

Eliminating noise with
Proof-Based Scanning
As websites and applications get ever more complex, dynamic, and interconnected, the number of potential
attack surfaces increases. DAST tools have to reconcile the need to identify as many attack vectors as possible
with the challenge of deciding which results indicate real issues and which are noise. Vendors can (and do)
develop tools that can find and probe the vast majority of attack surfaces in a modern application, but without
verification, each result is at best an educated guess. Here is how Invicti eliminates this uncertainty.

Proof-Based Scanning
was built around the
fundamental insight
that the only way
to be completely
sure a vulnerability
is exploitable is to
safely exploit it.

*Direct-impact vulnerabilities are weaknesses that can be exploited remotely
without special prerequisites and have direct consequences for security.

How Invicti Generates Proof to Avoid False Positives | 6

Proof of exploit to show you can get breached
For many of the most serious vulnerabilities that can
directly lead to a system compromise or data breach,
Invicti safely extracts a sample of data from the
target system and includes this in its report as a proof
of exploit (PoE). This is not only the strongest possible
proof that the issue is real but also an indication of the
potential impact if the vulnerability is exploited. After
all, if Invicti is able to automatically inject and execute
a harmless query or command, a determined attacker
sending a malicious payload could do some
serious damage.

Invicti can generate proofs of exploit for the following
vulnerability types:

• SQL injection
• Boolean SQL injection
• Blind SQL injection
• Remote file inclusion (RFI)
• Command injection
• Blind command injection
• XML external entity injection (XXE)
• Remote code evaluation
• Local file inclusion (LFI)
• Server-side template injection (SSTI)
• Remote code execution (RCE)
• Injection via local file inclusion

All the proofs of exploit generated during a single
scan session are gathered under the Proofs node
in Invicti’s Knowledge Base.

To see how this works, let’s take SQL injection. Having
identified a potential injection point, Invicti crafts a
proof extraction payload and attempts to inject it into
the vulnerable application.

If this succeeds, the application will respond with data
returned by the database in response to the injected
query. This will typically include not only the database
server name and version but also internal information,
like the name and system user of the database queried
by the application. These are safe queries executed
against system tables, but again – imagine the havoc a
determined attacker could wreak by injecting malicious
queries in the same way.

Beyond proving basic SQL injection, Invicti can also
deliver PoE for more advanced variants. For boolean
SQL injection, the scanner generates a whole series
of payloads to inject queries that allow it to extract
the same proof (for example, the database user name)
but going letter by letter rather than all at once. The
same approach is used for time-based blind SQL
injection, except here the letters are inferred based on
differences in database response times. Invicti’s own
out-of-band infrastructure is used to make sure that all
responses are included in the results.

How Invicti Generates Proof to Avoid False Positives | 7

While extracting sample data is only possible for
some types of vulnerabilities, Invicti also provides
confirmation and proof for many other issues, most
notably various variants of cross-site scripting (XSS).
Whenever the scanner detects a vulnerability that
can be safely exploited, it generates and executes
test payloads within the vulnerable application
context. When successful, these attacks prove that
the vulnerability is real, so the payload is reported as
a proof of concept (PoC). Seeing the actual attack
payload is especially useful for reproducing and fixing
the underlying issue.

Many scanners on the market advertise an attack
replay capability for XSS. They often provide a
link to show how the vulnerability could potentially
be exploited, in effect tasking the user with manually
verifying the issue. With Invicti, there is no “potentially”
– a confirmation and PoC is only reported if the
attack has already been successfully executed in the
embedded browser environment. This minimizes the
risk of false positives caused by scanners mistaking
valid responses for vulnerable behaviors and works for
many types of vulnerabilities, including issues where the
proof had to be exfiltrated out-of-band.

Proof of concept to demonstrate the attack
If it is possible to directly replay the attack in-band and
without special context, a proof URL is provided for
convenience (in addition to the original payload).

For maximum accuracy, Invicti’s proof-generating
payloads don’t perform simple string echos (which
could yield occasional false matches) but more
complex operations that will only return the expected
result if the attack point is indeed vulnerable. For
example, when investigating an XSS vulnerability,
Invicti will attempt to execute a confirmation payload
that includes a randomly-chosen arithmetic operation.
DOM simulation is used to check if the payload triggers
the expected interfaces to deliver the correct result of
the calculation. For DOM-based XSS, Invicti goes one
step further and reports stack traces from its internal
DOM simulation to both confirm the vulnerability
and provide developers with detailed debugging
information that helps them quickly find and
eliminate the root cause.

If Invicti is unable to automatically confirm
a vulnerability, it provides a certainty score
to indicate its confidence in the result. Even
if you don’t get a 100% confirmation, most
high-confidence issues are still going to be
genuine. For example, the scanner might
successfully exploit a vulnerability in a multi-
stage attack but be unable to perform the
final confirmation stage.

How Invicti Generates Proof to Avoid False Positives | 8

Actionable results to
support remediation

Proving the accuracy of
Proof-Based Scanning

Being able to fully trust the Confirmed stamp in Invicti vulnerability reports completely changes the dynamics
of web application security. Even so, there is still a way to go between getting the report and deploying an
effective fix, which is the ultimate goal of your security testing process. To provide maximum support for issue
remediation, Invicti delivers a wealth of additional information in its vulnerability reports. This is especially
important in fully automated workflows where developers get their security-related tickets directly from the
DAST tool. Each report includes all the information needed to understand and fix the underlying issue, including:

All security testing products claim to be highly accurate, but verifying these claims is extremely difficult, as
each result would ultimately need to be checked by a security engineer. Industry benchmarks executed on a
common set of known vulnerable test sites can give some idea about the capabilities of a tool but only limited
information about its real-life effectiveness. Simply comparing data points such as false positive ratios can also
lead to dubious conclusions – a scanner might have zero false positives not because it’s so accurate but because
it didn’t find anything. The only honest and objective way to measure the accuracy of vulnerability reporting is to
ask the people for whom every false positive means extra work: the security engineers themselves.

Extra depth from IAST: When the additional
interactive application security testing (IAST)
component is deployed in the application testing
environment, Invicti can provide more detailed
information about vulnerabilities. Depending on
the application language, this can include a server-
side stack trace or even the specific line of code.
The IAST module can also find and prove additional
vulnerabilities that the scanner alone might not be able
to see or confirm.

Attack payloads and proof URLs: Knowing exactly
what payloads can trigger vulnerable behaviors is
a huge time-saver for developers. Combined with
information such as the request type and targeted
parameters, seeing thepayload makes it easier to
find the right code fragment and understand why it is

vulnerable. If IAST is used, this insight can even extend
to seeing the actual query that is sent to the database
in SQL injection attacks.

Remediation guidance: Developers are not security
engineers and can’t be expected to know every type of
vulnerability along with the current best practices for
fixing it. Because confirmed Invicti vulnerability reports
don’t need manual verification, they are specifically
designed to go directly to developers. Each report
includes all the information needed to understand and
fix the underlying issue, complete with the potential
impact if exploited by attackers, specific remediation
steps, and links to external reference resources.

How Invicti Generates Proof to Avoid False Positives | 9

Getting data about false
positives from Invicti users
Even the best test cases can’t always keep up with
the sheer variety of real-life customer applications. To
continuously improve the security checks available in
Invicti, we provide users with a way to indicate that, in
their opinion, the scanner has made a mistake. Every
Invicti vulnerability report therefore includes a False
Positive button that allows users to manually flag that
result as a false alarm.

Since 2015, we have been logging statistical data
about the type and number of vulnerabilities found
by the cloud-based on-demand scanner, complete
with false positive flags set by the users. Our security
researchers and developers use this feedback to
refine the product by identifying real-life edge cases
and incorporating them into the security checks. For
the purpose of this white paper, we have performed a
long-term analysis of these user reports to get an idea
of how often Invicti has falsely marked a vulnerability
as confirmed.

Invicti security researchers went through all user
reports of false positives across over half a million
unique vulnerabilities reported by Invicti Enterprise
on-demand from 2016 to 2021 and manually
investigated every single class of vulnerabilities where
such flags appeared. As it turned out, the original
Invicti confirmation was correct in the vast majority
of cases. For the remainder, that is for every type
of vulnerability that really was a false positive (for
whatever reason), the relevant security check was
updated and tested to make sure that this type of
issue will be reported correctly in the future.

The only honest and objective way to measure the
accuracy of vulnerability reporting is to ask the people
for whom every false positive means extra work:
the security engineers themselves.

How Invicti Generates Proof to Avoid False Positives | 10

The results are in:
99.98% accuracy and counting
The first round of analysis was the manual verification
of user-reported false positives. Already at this stage,
the historical accuracy of automatic vulnerability
confirmation across several years of data turned out
to be 99.88%, meaning that only 0.12% of confirmed
vulnerabilities were indeed false positives. After security
checks were improved to incorporate these few cases,
the data was analyzed again to determine the current
accuracy level. The accuracy of Invicti’s Proof-Based
Scanning currently stands at slightly over 99.98% –
meaning that when Invicti marks a vulnerability as
confirmed, you can be 99.98% sure that the issue is
real, exploitable, and not a false positive.

Put another way, for every 10,000 vulnerabilities that are
automatically confirmed by Invicti, you will get fewer
than 2 false alarms – and the scanning technology is
under constant development for even higher accuracy.
This is all based on historic results generated by
testing real-life web applications across thousands of
organizations, not fine-tuned synthetic benchmarks
or tests on well-known example sites. So when you
see the familiar Confirmed stamp on a vulnerability
that Invicti has found in your application, you can be
confident that the issue is real and assign it directly to
developers with no manual verification.

When Invicti marks a vulnerability as
confirmed, you can be 99.98% sure that the issue
is real, exploitable, and not a false positive.

CONFIRMED

How Invicti Generates Proof to Avoid False Positives | 11

Bringing exploitable issues
into sharp focus
Proof-Based Scanning focuses on providing
confirmation where it matters most: for vulnerabilities
that are directly exploitable by attackers and can have
serious consequences if targeted in production. This is
where the proof-based approach does double duty, on
the one hand ensuring trustworthy results and on the
other demonstrating that if an automated tool can get
through, so can malicious actors.

To put a specific number on this, our analysts worked
on the same historical data and calculated that Invicti
provides accurate automatic confirmation for 94.74%
of all direct-impact vulnerabilities that it detects. In
other words, if you have a vulnerability that could get
you hacked right now, Invicti will find it, report it, and in
close to 95% of cases safely exploit it for confirmation.
This covers the vast majority of weaknesses that
could lead to an immediate data breach or
system compromise.

This level of confidence in vulnerability scan results
completely changes the dynamics of web application
security. Instead of probabilities, you can now work
with clear and indisputable facts: here is a vulnerability
that an automated scanner managed to exploit, so fix
it now before real attackers find it. If the application is
still in development, you know what security holes must
be plugged before it can go into production. You finally
have solid data to support your security decisions.

Cut the noise to get the facts
Proof-Based Scanning brings a no-nonsense approach to application security
testing. Instead of flooding users with uncertain results and burdening them
with verification, Invicti uses every trick in the book to minimize uncertainty at
each stage of the testing process and then deliver solid proof wherever possible.
This elevates vulnerability scanning from its traditional role as an aid to manual
testing to the rank of a standalone solution that you can automate with complete
confidence. Now your security engineers can finally focus on issues that really
need their expertise.

invicti.com

invicti.com/contact/

FIND US
twitter.com/invictisecurity

facebook.com/invicti-security

linkedin.com/company/invicti-security

About Invicti Security
Invicti Security is transforming the way web applications are secured. An AppSec leader for more than 15 years, Invicti
enables organizations in every industry to continuously scan and secure all of their web applications and APIs at the
speed of innovation. Through industry-leading Asset Discovery, Dynamic Application Security Testing (DAST), Interactive
Application Security Testing (IAST), and Software Composition Analysis (SCA), Invicti provides a comprehensive view
of an organization’s entire web application portfolio and scales to cover thousands, or tens of thousands of applications.
Invicti’s proprietary Proof-Based Scanning technology is the first to deliver automatic verification of vulnerabilities and
proof of exploit with 99.98% accuracy, returning time to development teams for critical projects and innovation. Invicti is
headquartered in Austin, Texas, and serves more than 3,500 organizations all over the world.

https://www.invicti.com/
https://www.netsparker.com/
https://www.invicti.com/contact/
http://twitter.com/invictisecurity
http://twitter.com/invictisecurity
http://facebook.com/invicti-security
http://linkedin.com/company/invicti-security
http://linkedin.com/company/invicti-security

